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Expressions are developed for the components of the linear Lagrangian, linear Eulerian, finite Lagrangian 
(Green's), and finite Eulerian (Almansi's) strain tensors in terms of a crystal's lattice parameters before and 
after a deformation. The development has been undertaken with the concepts and notations of linear 
algebra. 

Introduction 

When the particles of a material medium (like a 
crystal) are displaced relative to each other, the 
medium is said to undergo a deformation. This 
deformation can be viewed as a mapping T from 
three-dimensional space (three-space) on to three- 
space such that if X denotes the position of a point in 
space before deformation, then T(X) denotes the 
position of that same point after deformation. To aid 
in the discussion, we will often refer to T(X) as x. If 
we impose a Cartesian coordinate system C on three- 

space, we have for X and x the addresses X 2 and 
X3 

x 2 , respectively, where X t, X 2, X 3, x 1, x 2 and x 3 are 
\x3 /  

real numbers. In this case we denote X 2 by [Xlc  
X3 

(x, t and x2 by [x] c. The vector u = x - X  determines 
x 3 

the displacement of a particle positioned at X prior to 
deformation. Since u is determined either by T and X 
or by T and x, u can be viewed as a function of either 

X or x. Consequently, the components of [u] c = u2 
u 3 

can be expressed either in a Lagrangian form as 
functions of the particle's initial coordinates, i.e. as 

u i = ui(XI,X2,X3), or in an Eulerian form as a func- 
tion of the particle's final coordinates, i.e. as 
u i = ut(xl,x2,x3). It can be shown that (Bhagavantam, 
1966) the state of deformation (strain) of a body can 
be characterized by a symmetrical second-rank tensor 
termed a strain tensor. Several tensors of this type 
have been defined. Those of interest to us are the 
linear Lagrangian strain tensor defined as 

l,j = 5 \ + ' 

the linear Eulerian strain tensor defined as 

1 ( eU i OUj ) .  

the finite Lagrangian (Green's) strain tensor defined as 

1 (  con i cOuj cOu k 8Uk ~ 

and the finite Eulerian (Almansi 's) strain tensor 
defined as 

1 (  Ou~ Ouj Ou k Ouk) 

The conditions under which one kind of strain 
tensor rather than another should be used is a subject 
dealt with in continuum-mechanics texts (Mase, 1970) 
and will therefore not be discussed here. Our goal is 
the systematic development of expressions that give l u, 
e o, Ltj, and E o in terms of the lattice parameters of a 
crystal measured before {ao,bo,co,%,flo,), o} and after 
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{al,b1,cl,(tl,fl~,71} it has been subjected to a defor- 
mation. The ease with which such lattice parameters 
may be obtained by means of routine X-ray diffrac- 
tion techniques make such formulations particularly 
useful. Expressions of the type developed here are 
useful in a variety of crystallographic problems 
involving topotaxy and exsolution (Morimoto & 
Tokonami, 1969), solid-solution series (Ohashi & 
Burnham, 1973) and thermal expansion (Schlenker, 
Gibbs & Boisen, 1975). Before we can develop these 
expressions, we must first examine the properties of 
the mapping T. In the study of deformation, we are 
only interested in the relative distances between pairs 
of points before and after deformation. Consequently, 
translations are irrelevant and we may assume that the 
origin O of our Cartesian coordinate system remains 
fixed. Hence, without loss of generality, we may 
assume that T ( O ) =  O. If we denote the natural basis 
of the crystal before deformation by B 0 = {a0,b0,e o} 
and if we denote T(a0), T(b 0) and T(e0) by a 1, b 1 and 
e 1 respectively, then B~ = {al,bl,C , } is the natural basis 
of the crystal after deformation. In fact, if ( (r)} 
v = r l a  0 + r2b 0 + r3c o i.e. [v]B0 = r2 is any vector 

r 3 

before deformation, then the deformed vector T(v) 
equals the same linear combination of {apbi,Cl}, i.e. 
T(v) = r~a~ + r2b ~ + r3c ~ (Born & Huang, 1968). 
Therefore, [vlB0 = [T(v)IB.. Since B 0 and O1 have a 
common origin [since we may assume T(O) = O], the 
above observations imply that T is a linear transfor- 
mation [i.e. T(X + Y) = T(X) + T(Y) for all vectors 
X, Y in three-space and T(rX) = rT(X)  for all real 
numbers r and all X in three-space]. Consequently, as 
is always the case for a linear transformation, T can 
be represented by a matrix. It is therefore apparent 
that the equations giving the displacement in the 
Cartesian system must be of the form ui = IuX  j = 
Jiix~ where the I u and Ju are constants. Since /~i = 
8u//OX, and Ju = OuJOxj, it is also evident that 1/1 
½(I + If),  [el = ½(J + J~), [LI = ½(I + I r + IrI) ,  and 
[El = ½(: + J ~  + J ~ : ) .  

[-x]B o 

matCl 

Ix-] c 

rnat88~T----~- [T (X)]B, = [X]B ' 

mat~:q 

matc c T 
- [T(X)]c :[X]c 

Fig .  1. M a t r i x  r e p r e s e n t a t i o n  o f  T wi th  r e s p e c t  to  t he  b a s e s  B 0 
a n d  B ~. 

The linear Lagrangian and Eulerian strain tensors 

The conventional [Institute of Radio Engineers (IRE) 
convention, Mason, 1950] orientation of a crystal- 
lographic coordinate system relative to a Cartesian 
coordinate system is to place the e cell edge of the 
crystal along the z axis of the Cartesian system and 
the b cell edge in the yz  plane of the Cartesian system 
so that a* is oriented along the x axis. Hence, the 
change of basis matrix from the basis B i, i = 0,1, to 
the Cartesian basis C = {i,j,k}, symbolized by mat c, 1 
(i.e. mat c, 1 is the matrix representation of the identity 
map with respect to the basis B i and C), is 

I a i s in f l i s in  7" 0 0 ]  

matC, 1 = - a  i sin ~i COS 7t bi sin a i . (1) 

a i cos fli b i cos ( I  i C i 

Note that matC/1 has the property that (mat c, 1)[X]B,. 
= [X] c. Also, (matCi 1) -i  -- mat~ 1. As the diagram in 
Fig. 1 indicates, the matrix representation of T with 
respect to the bases B 0 and B I, symbolized matBSo,, can 
be decomposed as 

matgd T =  (mat~ 1)trnat c ' :  c T)(matnCo 1). (2) 

The matrices matC0 1 and matg, 1 are given by (1). 
Since (mat~T)[Xln0 = [T(X)I~, and since, as noted 
above [xlB0 = [T(X)IB,, matg~, T must be the identity 
matrix 13. We now write mat~: T in terms of I and 
solve. Since [Ulc = I [Xlc  and [u] c = [T(X)] c - [X]c, 
we have [T(X)]  c = [Xlc  + II Xlc = I3[X]c + I l K ]  c 

----- (13 + I ) [X]  c. Therefore, matcCT = (13 + I ) .  

Equation (2) now becomes 

13 = (mat c, 1) - l  (13 + I)(matC~ 1). 

Therefore, I = (mat c, 1)(matCo 1) -1 - 13. On letting S r 
denote (mat c, 1), it is apparent that I = SrlSff r -- 13. 
The linear Lagrangian strain tensor then takes the 
form 

= 1 --1 T [/] = ½[I + I r] ~[(S 0 Sl) "Jr- S o l S l  ] -- 13. 

On carrying out the indicated operations the following 
expressions are obtained for the elements of [/]: 

a I sin fl, sin 7" 
III = a o sin flo sin 70* -- 1, 

b I sin a l 
122 - -  1, 

b0sin a0 

/33-  el 1, 
C O 

1 f b l s i n  al  cos 7" alsin fll cos 7" ] 
112=121= 2 b0s ina  0sin7~' - a0sin/30 sin 7* ' 
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1 F a, cosfl, cos y* 
It3 = 13' = 2 [ aosin'-~o s ~  ~o + sin------~ 

(blCOS (t, clco, (to) clcOS o ] 
"2 - -  ' ~ 

× b o sin a 0 c o sm a 0 c osin fl0 sin 7" 

, . co .oo]  
123=132= 2 bosin(t0 c o sin (t o 

Equation (3) was previously developed by Ohashi & 
Burnham (1973). It is not clear from their derivation 
that the strain tensor (3) is identical with the linear 
Lagrangian strain of classical continuum theory. The 
above expressions for the monoclinic case have been 
developed by Morimoto & Tokonami (1969) in their 
study of the oriented exsolution of augite in pigeonite, 
however, no derivation was given. 

The elements of the linear Eulerian strain tensor, 
Iel, may be obtained as follows. From a discussion 
analogous to that presented above it can be shown 
that [Xlc  = ( I 3 - J ) [ T ( X ) l c  from which it follows 
that m a t ~ T  = ( I  3 - j ) - l .  On employing (2) we obtain 
13 = s i - r ( 1 3 - J ) - l s r  which, on solving for J, yields 
J =  13 - s o r s f  r. From the definition of the Eulerian 
strain tensor it is apparent that 

[el = ½[J + j r ]  = 13_ ½[(S{-,So)r + S~-lSo]. 

Therefore the elements of [e] are: 

ell = 1 -- a°sin flo sin y* 
a lsin fll sin ~* ' 

bosin (to 
e22 = 1 

b~sin cq 

e l 2  

e33 = 1 C° , 
Ci 

1 F aosin fl0 cos ~ '  

= ezl = 2 [_ a I sin fit sin Yl* - 

b 0 sin a o cos 7* -] 

b l sin sin J' 

plicated when given in explicit form, only implicit 
expressions, given in terms of S O and S I, are presented 
here. For the finite Lagrangian strain tensor we have 

[LI = ½[I + I r + l r l ]  

= ½ [ ( S F S (  r - 13) + ( S ~ S (  r -  I 3 )  r 

+ (SrSo - r -  I 3 ) r ( S r S o r -  I3)] 

which on simplification yields 

= 1 - l  T - T  ILl ~[S o S i S  1 S 0 - 13] 

while for the finite Eulerian strain tensor we have 

[ E l =  ½[J + j r  + j r j ]  

: ½[(I3 - s r s F  r) + (13 - S~SFr)  r 

+ (13 -- S~Slr ) r ( Ia  -- SgSFr)] 

which yields on simplification 

[El = ½1313 + SFISoS[SF r -  2(S~lSo)  T 

- -2(SF 'So)I .  

Conclusion 

The calculation of strain-tensor components for 
deformed crystalline materials is a necessary step in 
the solution of a variety of physical and crystal- 
chemical problems. In this paper, a mathematical 
procedure has been used to develop expressions for 
calculating components of the linear Lagrangian and 
Eulerian strain tensors from measurements of lattice 
parameters before and after deformation. Implicit 
expressions of the same type are presented for the 
finite Lagrangian and finite Eulerian strain tensors. 
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e l 3  

1 1- COCOS fit 
= e3~ = 2 [c~sin/Y~ sin ~,* 

cos ~,* + -  
sin y* 

b0 os.0) a:osP0 ] 
X : 

clsm a I btsin a I a l s in f l l s inT*  ' 

1 Fc0cosa~ b o c o s a o ]  
e23 = e32 : 2 Lc-ll S-~'n (tl btsin ~ " 

The finite Lagrangian and Eulerian strain tensors 

Since the expressions for the elements of the finite 
Lagrangian and Eulerian strain tensors are com- 
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